Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Pediatr ; 260: 113534, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37269902

RESUMO

OBJECTIVE: To describe the usefulness of rapid whole genome sequencing (rWGS) in a cohort of children presenting with acute liver dysfunction. STUDY DESIGN: This was a retrospective, population-based cohort study conducted at Primary Children's Hospital in Salt Lake City, Utah. Children meeting criteria for acute liver dysfunction who received rWGS between August 2019 and December 2021 were included. rWGS was performed on blood samples from the patient and parents (1 or both depending on availability). The clinical characteristics of patients with positive rWGS results were compared with those with negative results. RESULTS: Eighteen patients with pediatric acute liver dysfunction who had rWGS were identified. The median turnaround time from the date rWGS testing was ordered to the date an initial report was received was 8 days with a shorter turnaround time in patients with a diagnostic rWGS (4 days vs 10 days; P = .03). A diagnostic result was identified in 7 of 18 patients (39%). Subsequently, 4 patients in this cohort, who had negative rWGS results, were found to have a toxic exposure accounting for their liver dysfunction. With removal of these patients, the diagnostic rate of rWGS was 7 of 14 (50%). The use of rWGS led to a change in management for 6 of 18 patients (33%). CONCLUSIONS: We found that rWGS provided a diagnosis in up to 50% of pediatric acute liver dysfunction. rWGS allows for higher diagnostic rates in an expedited fashion that affects clinical management. These data support the routine use of rWGS for life-threatening disorders in children, specifically acute liver dysfunction.


Assuntos
Hepatopatias , Criança , Humanos , Lactente , Estudos Retrospectivos , Estudos de Coortes , Sequenciamento Completo do Genoma/métodos , Mapeamento Cromossômico
2.
Genetics ; 224(2)2023 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-37010100

RESUMO

Chromosome breakage plays an important role in the evolution of karyotypes and can produce deleterious effects within a single individual, such as aneuploidy or cancer. Forces that influence how and where chromosomes break are not fully understood. In humans, breakage tends to occur in conserved hotspots called common fragile sites (CFS), especially during replication stress. By following the fate of dicentric chromosomes in Drosophila melanogaster, we find that breakage under tension also tends to occur in specific hotspots. Our experimental approach was to induce sister chromatid exchange in a ring chromosome to generate a dicentric chromosome with a double chromatid bridge. In the following cell division, the dicentric bridges may break. We analyzed the breakage patterns of 3 different ring-X chromosomes. These chromosomes differ by the amount and quality of heterochromatin they carry as well as their genealogical history. For all 3 chromosomes, breakage occurs preferentially in several hotspots. Surprisingly, we found that the hotspot locations are not conserved between the 3 chromosomes: each displays a unique array of breakage hotspots. The lack of hotspot conservation, along with a lack of response to aphidicolin, suggests that these breakage sites are not entirely analogous to CFS and may reveal new mechanisms of chromosome fragility. Additionally, the frequency of dicentric breakage and the durability of each chromosome's spindle attachment vary significantly between the 3 chromosomes and are correlated with the origin of the centromere and the amount of pericentric heterochromatin. We suggest that different centromere strengths could account for this.


Assuntos
Quebra Cromossômica , Drosophila melanogaster , Animais , Humanos , Drosophila melanogaster/genética , Heterocromatina/genética , Centrômero , Cromossomo X
3.
Biol Rhythm Res ; 50(3): 375-388, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31011241

RESUMO

We investigated effects of apterous mutation ap56f on circadian locomotor activity, eclosion rhythms, and transcript levels of period and timeless in Drosophila. We investigated circadian locomotor activity and eclosion rhythms in ap 56fand wild-type flies, their F1 and F2 offspring, and wingless vestigial mutants and show that ap 56f disrupts circadian locomotor rhythms in a genetically recessive manner, that is not caused by the absence of wings. The ap blt strain also showed impaired circadian activity rhythms, providing independent evidence for a significant role of apterous in circadian locomotor rhythm expression. The ap 56f mutation did not disrupt a circadian eclosion rhythm or rhythmic expression of the period and timeless clock genes, indicating that apterous is not essential for circadian clock function, but is necessary for coupling locomotor activity to a circadian clock. Timeless transcription was reduced in ap 56f flies in 12:12 LD, suggesting that apterous may modulate core clock gene expression.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...